### From Big Data to Big Control: Closing Feedback Loops around Large-scale Infrastructure Data

Jakob Stoustrup & Rob Pratt
Pacific Northwest National Laboratory
jakob.stoustrup@pnnl.gov
robert.pratt@pnnl.gov

LANL Grid Science Winter School and Conference Santa Fe, NM Jan, 2015



## Control of Complex Systems Initiative: From Big Data to Big Controls

**CCSI**: A five year, multi-million dollar internal research investment to build and demonstrate development and delivery of best of class solutions for problems in the control of complex systems.

#### **Challenges for Big Controls:**

- Large numbers of sensing and/or control end points
- Multiple scales of operation usually with multiple time scales
- Node heterogeneity
- Pervasive computing/autonomous nodes

#### **Control solutions will be:**

Scalable, deployable, robust, resilient, and adoptable.



#### Significant Challenges Facing the Grid

## The challenges facing the grid are significant and in tension with each other

- Maintain and increase reliability
- Integrate renewables & low-carbon sources
- Potential electrification of vehicle transportation
   (& other end uses as electricity becomes the preferred "fuel")
- Increase asset utilization, reduce capacity for peak loads
- While keeping costs & revenues as low as possible

## Smart grid is the most promising approach to addressing these challenges simultaneously

Much of smart grid's promise lies in distributed assets: Demand response, distributed storage & generation, electric vehicles, smart inverters

#### **Future Control Architecture of the Grid**

## Designing a novel control architecture for the power grid needs a significant number of considerations, e.g.:

- Laws of electro-physics must be observed
- Current/future stakeholder boundaries must be respected
- Architecture must be deployable in a modular, incremental fashion
- For reasons of robustness, resilience & flexibility, the control architecture must be layered
- Considering the huge number of assets, lowest layer must be a distributed control architecture

**Transactive Controls** is a very promising approach for such a distributed control architecture

#### **Transactive Controls / Transactive Energy**

Refers to techniques for managing the generation, consumption or flow of electricity within a power system, using economic or market-based constructs, while respecting grid reliability constraints.

The term "transactive" comes from considering that decisions are made based on a value. These decisions may be analogous to, or literally, economic transactions.

## What Problems or Issues is Transactive Control and Coordination Designed to Address?



#### Principal Challenges Addressed by TC2

| Principal Challenge                                                                                                                                                              | Approach                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Centralized optimization is unworkable</li> <li>■ for such large numbers of controllable assets, e.g. ~10<sup>9</sup> for full demand response participation</li> </ul> | ▶ Distributed approach with self-organizing, self-optimizing properties of market-like constructs                                                                                                               |
| ► Interoperability                                                                                                                                                               | Simple information protocol, common between all nodes at all levels of system:  quantity, price or value, & time                                                                                                |
| <ul> <li>Privacy &amp; security</li> <li>due to sensitivity of the data required by centralized techniques</li> </ul>                                                            | Minimizes risks & sensitivities by limiting content<br>of data exchange to simple transactions                                                                                                                  |
| ► Scalability                                                                                                                                                                    | <ul> <li>Self-similar at all scales in the grid</li> <li>Common paradigm for control &amp; communication among nodes of all types</li> <li>Ratio of parent to child nodes limited to ~10<sup>3</sup></li> </ul> |

#### Principal Challenges Addressed by TC2 (cont.)

| Principal Challenge                                                                                                                | Approach                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Level playing field for all assets of all types:</li> <li>existing infrastructure &amp; new distributed assets</li> </ul> | <ul> <li>Market-like construct provides equal opportunity for all assets</li> <li>Selects lowest cost, most willing assets to "get the job done"</li> </ul>                             |
| ► Maintain customer autonomy  ■ "Act locally but think globally"                                                                   | <ul> <li>▶ Incentive-based construct maintains free will</li> <li>■ customers &amp; 3rd-parties fully control their assets</li> <li>■ yet collaborate (and get paid for it)</li> </ul>  |
| Achieving multiple objectives with<br>assets essential for them to be<br>cost effective                                            | <ul> <li>Allows (but does not require) distribution utility to act as natural aggregator</li> <li>address local constraints while representing the resource to the bulk grid</li> </ul> |
| ► Stability & controllability                                                                                                      | <ul> <li>Feedback provides predictable, smooth, stable response from distributed assets</li> <li>Creates what is effectively closed loop control needed by grid operators</li> </ul>    |



### PNNL Transactive Energy Approach: Transactive Control & Coordination (TC2)



## Transactive Control from Interaction of Price Discovery & Customer Bidding Algorithms

Precise, stable control of congested grid nodes derived from customer price-responsive bidding algorithm interacting with price discovery mechanism (e.g., a market)



## Hierarchical Network of Transactive Nodes Parallels the Grid Infrastructure

**Node:** point in the grid where flow of power needs to be managed



#### **Node Functionality:**

- "Contract" for power it needs from the nodes supplying it
- "Offer" power to the nodes it supplies
- Resolve price (or cost) & quantity through a price discovery process
  - market clearing, for example
- Implement internal priceresponsive controls



#### Properties of Transactive Nodes

- Use <u>local conditions</u> & <u>global information</u> to make control decisions for its own operation
- Indicate their response to the network node(s) serving them
  - to an incentive signal from the node(s) serving them
  - as a feedback signal forecasting their projected net flow of electricity (production, delivery, or consumption)
- Setting incentive signal for nodes serves to obtain precise response from them, based on their feedback signals
- Responsiveness is voluntary (set by the node owner)
- Response is typically automated (and reflected in the feedback signal)

#### Links All Values/Benefits in Multi-Objective Control

## Long-term objective for TC2 is to simultaneously achieve combined benefits

- Reduce peak loads (minimize new capacity, maximize asset utilization) – generation, transmission, <u>& distribution</u>
- Minimize wholesale prices/production costs
- Reduce transmission congestion costs
- Provide stabilizing services on dynamically-constrained transmission lines to free up capacity for renewables
- Provide ancillary services, ramping, & balancing (especially in light of renewables)
- Managing distribution voltages in light of rapid fluctuations in rooftop solar PV system output



## Transactive Cooling Thermostat Generates Demand Bid based on Customer Settings

- User's *comfort/savings* setting implies limits around normal setpoint (*T*<sub>desired</sub>), *temp. elasticity* (*k*)
- Current temperature used to generate bid price at which AC will "run"
- AMI history can be used to estimate bid quantity (AC power)
- Market sorts bids & quantities into demand curve, clears market returns clearing price



#### RTP Double Auction Market – *Uncongested*



#### RTP Double Auction Market – Congested



#### What about the Congestion Surplus?



# Fully Engaging Demand: What We've Learned from the Olympic Peninsula Demonstration





#### Olympic Peninsula Demonstration



#### Olympic Peninsula Demo: Key Findings (1)

Customers can be recruited, retained, and will respond to dynamic pricing schemes if they are offered:

- Opportunity for significant savings (~10% was suggested)
- A "no-lose" proposition compared to a fixed rate
- Control over how much they choose to respond, with which end uses, and a 24-hour override
  - prevents fatigue: reduced participation if called upon too often
- Technology that automates their desired level of response
- A simple, intuitive, semantic interface to automate their response



#### Translates to control parameters:

K,  $T_{max}$ ,  $T_{min}$  (see Virtual Thermostat)



#### Olympic Peninsula Demo: Key Findings (2)

#### Significant demand response was obtained:

- 15% reduction of peak load
- Up to 50% reduction in total load for several days in a row during shoulder periods
- Response to wholesale prices + transmission congestion + <u>distribution</u> <u>congestion</u>
- Able to cap net demand at an arbitrary level to manage local distribution constraint
- Short-term response capability <u>could provide regulation</u>, <u>other ancillary</u> <u>services</u> adds significant value at very low impact and low cost)
- Same signals integrated commercial & institutional loads, distributed resources (backup generators)



#### Load Shifting Results for RTP Customers



- Winter peak load shifted by pre-heating
- Resulting new peak load at 3 AM is noncoincident with system peak at 7 AM
- Illustrates key finding that a portfolio of contract types may be optimal i.e., we don't want to just create a new peak

